BTM-3528 Potently Induces G0/G1 Cell Cycle Arrest and is Efficacious in Preclinical Models of Diffuse Large B Cell Lymphoma (DLBCL)

Matthew Kostura1, Jedd Levine1, Vibha Oza1, Alan Cooper1, Mezli Arguello2, Peter White2, Stephane Ciblat2, Anthony Regina2, Martine Breault2, Arshad Siddiqui2, and Michael Luther1

1Bantam Pharmaceutical, Boston, MA, 2Paraza Pharma, Montreal, Canada

Aberrant regulation of cell cycle control, integration of signals from oncogenic signaling pathways, and cancer cell metabolism play a key role in the pathogenesis of multiple hematologic malignancies and solid tumors. BTM-3528 is an orally available compound that causes concentration dependent cell cycle arrest in the G0/G1 phase of the cell cycle, rapidly decreases cellular glutathione levels and induces expression of p21. BTM-3528 has no significant biochemical activity against a panel of known drug targets including kinases (in addition to cyclin dependent kinases), G-protein coupled receptors, ion channels, and histone deacetylases. For the described study, the activity of BTM-3528 was evaluated in in vitro and in vivo models of diffuse large B cell lymphoma (DLBCL).

Profiling of BTM-3528 across a panel of hematologic and solid tumor cancer cell lines demonstrated potent anti-proliferative activity against a select set of cancer cell types without effect on normal human cells. These included multiple DLBCL cell lines notably of germinal center B cell (GCB) subtype. The majority of the DLBCL cell lines tested were characterized by Myc and Bcl-2 gene rearrangements or amplifications. Cell proliferation was 100% inhibited with IC50s ranging from 0.14 to 0.52 μM in these DLBCL cell lines. Furthermore, at these concentrations apoptosis was induced in these cell lines by BTM-3528. In the context of G0/G1 cell cycle arrest, BTM-3528 decreased Cyclin D3 and Myc protein expression.

In vivo pharmacokinetic studies showed that BTM-3528 has excellent oral bioavailability with a murine t ½ of 6 hours. BTM-3528 was tested in a human subcutaneous DLBCL xenograft model (BJAB). Post tumor implants, animals with tumors > 250 mm³, were dosed once daily with BTM-3528 at the maximum tolerated dose of QD 75 mg/kg orally for 14 days. Significant anti-tumor activity was observed by day 3 of treatment with prompt and sustained tumor regressions. Furthermore, following discontinuation of BTM-3528 after 14 days of treatment, sustained complete tumor regressions were maintained in 50% of the treated animals.

Preliminary toxicology evaluation of BTM-3528 showed no adverse effect on hematopoiesis or hepatic function.

Conclusion: BTM-3528 is a novel orally bioavailable compound with a unique mechanism of action based on G1/G0 cell cycle arrest and modulation of cancer cell metabolism. It shows significant activity and a favorable toxicity profile in in vitro and in vivo models of DLBCL. These results underscore the clinical development potential of BTM-3528 for the treatment of DLBCL.